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Abstract
The approximate solution of a homogeneous singular integral equation, or
equivalently a homogeneous infinite algebraic system, is fully justified and
the error resulting from the truncation is estimated. This equation (algebraic
system) is the standard form to which many even mixed Sturm–Liouville
problems are reducible.

PACS numbers: 02.60.Lj, 02.30.Rz

1. Introduction

In the integral equation formulation of mixed Sturm–Liouville problems, proposed by Eckhardt
and ElSheikh [1], the problem is reduced to a discrete Riemann problem, which in turn is
transformed to the form of a class of homogeneous singular integral equations with Cauchy’s
kernel. The solution of this integral equation designates the unknown function in terms
of its Fourier components that are still to be determined. To this end, the solution can be
further reduced to a homogeneous infinite system of algebraic equations and as such it, and
consequently the integral equation itself, can only be approximately solved. The approximation
consists namely in truncating the homogeneous system (equation) and excluding all the
components of the unknown function that exceed a certain order.

The justification of the above-mentioned truncation was expected through semi-analytic
reasonings made in [1]. A numerical experiment was performed in [2] which confirmed these
predictions. The first attempt to justify this approximation was started in [3]. It stands on the
fact that a solution of a homogeneous system (equation) can be determined only to within a
multiplicative factor. Thus, provided an eigenvalue is known, the corresponding solution can
be so normalized that its first Fourier component is equal to unity and the homogeneous system
(equation) in this way is equivalent to an inhomogeneous one (equation). This equivalence
remains valid on performing the truncation at any order. At this point it is worthwhile to
summarize the theorem of Chersky [4] used in that attempt to clarify why it was appropriate
to suggest the present work, which stands again on this theorem.
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Theorem 1. Let the following conditions be fulfilled.

(1) The approximate equation k̃ϕ̃ = f̃ has the unique solution ϕ̃.
(2) f − f̃ ∈ Y0, where Y0 is a linear subset, Y0 ⊂ Y .
(3) Operator K − K̃ is acting from X into Y0.
(4) The inverse operator K̃−1, acting from Y0 into X0 ⊂ X, is determined.
(5) ‖K̃−1(K − K̃)‖ < 1.

Then the equation Kϕ = f , has the unique solution

ϕ = ϕ̃ + [I + K̃−1(K − K̃)]−1K̃−1(f − Kϕ̃)

and the following estimate holds:

‖ϕ − ϕ̃‖X0
�

∥∥K̃−1(f − Kϕ̃)
∥∥
X0

1 − ‖K̃−1(K − K̃)‖ .

The operatorK considered in [3] was the integral operator of the inhomogeneous equation
to which the Sturm–Liouville problem was reduced. In contrast to K − K̃ , the operator K̃−1

could not have been definitely estimated and thus the establishment of the justification is
somewhat incomplete. Moreover, the error taking place in the solution of the integral equation
due to the truncation could not have been estimated.

In this work the justification of the truncation applied to that homogeneous integral
equation is completely established and a definite expression for the resulting error is given.

In section 2, the class of singular integral equations we are concerned with as well as
the procedures of its solution are briefly exhibited. This solution is in turn viewed as another
integral equation to which the above-mentioned theorem of Chersky can be applied. In section 3
are outlined steps of determining the estimations of which use has been made in the previous
section. In section 4, numerical verifications are given. The typical problem used here is that
considered in [3]: the Dirichlet–Neumann mixed Sturm–Liouville problem for the Laplacian
in the unit disc. Section 5 is devoted to some conclusions and comments.

2. The class of homogeneous singular integral equations, its solution through
truncation, justification and error estimation

In many initial Dirichlet–Neumann problems, the major task consists in solving the
corresponding mixed Sturm–Liouville problem. Denoting by ϕ−(θ; γ ) the even Hölder-
continuous extension of the Dirichlet condition corresponding to the eigenvalue γ and which
is compatible with the Neumann condition where it is imposed, this extension is the solution
of a form of the Cauchy-type integral equation [1–3]

1

π i

∫ c

−c

ϕ−(t; γ )
1 − ei(θ−t)

dt − Q0(γ )�0−(γ )θ −
∞∑ ′

n=−∞

1

n
Qn(γ )�n−(γ )einθ = α (2.1)

where α is a constant that can be set equal zero since it does not contribute to the solution and

Q|n|(γ ) = o(|n|−1). (2.2)

In equation (2.1), the prime over the summation symbols indicates that the value n = 0 is not
included and the principal interval [−c, c] is the domain of the support of ϕ−(θ; γ ) while this
function vanishes on [−π, π ]/[−c, c]. It can also be shown that the above assertion holds true
for problems with configurations other than these considered in [1–3] or even for problems
with more complicated boundary conditions such as occur in elastic contact problems.

If the series in equation (2.1) converges to an L2-function, then this equation has the
following bounded and Hölder-continuous solution [3], [5, p 257]:
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ϕ−(θ; γ ) = −R(θ)

{
Q0(γ )�0−(γ )

∞∑
n=1

(−1)n

n
[In(θ) − I−n(θ)]

−
∞∑
n=1

Qn(γ )
�n−(γ )

n
[In(θ) − I−n(θ)]

}
(2.3)

where

R(θ) = lim
z→eiθ

|z|<1

√
(z − eic)(z − e−ic) (2.4)

In(θ) = 1

π

∫ c

−c

ei(n+1)t

R(t)(eit − eiθ )
dt (2.5)

and the explicit expressions of the integrals In(θ) that are equivalent to those given in [1–3]
are obtained from

−e−iθ I−n(−θ) = In(θ) = −ei(n−1)θ
n−1∑
j=0

e−iθ jPj (cos c) (2.6)

where Pj (cos c) are Legendre polynomials defined by the formula

Pj (cos c) = 1

π

∫ c

−c

e−ijθ

R(θ)
dθ. (2.7)

Further, it will turn out in the following section that

Y 2
n = ‖gn(θ)‖2

L2
= ‖R(θ)[In(θ) − I−n(θ)]‖2

L2
= o

(
1

n

)
(2.8)

and if

g(θ) = R(θ)

π

∫ c

−c

teit dt

R(t)(eit − eiθ )
= R(θ)

∞∑
n=1

(−)n+1

n
[In(θ) − I−n(θ)] (2.9)

then

Y 2 = ‖g(θ)‖2
L2

< ∞. (2.10)

To define the Fourier coefficients �n−(γ ) and complete the definition of the solution (2.3),
the Fourier transform can be applied to it and the following homogeneous algebraic system is
obtained:

�0−(γ ) + N0Q0(γ )�0−(γ ) −
∞∑
n=1

Qn(γ )

n
[Nn0 − N−n0]�n−(γ ) = 0

��−(γ ) − 1

�
N�oQ0(γ )�0−(γ ) −

∞∑
n=1

Qn(γ )

n
[Nn� − N−n�]�n−(γ ) = 0

� ∈ N

(2.11)

where the expressions of N±n� (for n ∈ N and � ∈ N+) and N0 are given in [3] and can be
extracted from the contents of the next section on deducing the important results

|N±n0| < o

(
1

n

)
|N±n�| < o

(
1

n1/2�3/2

)
and N0 < ∞ (n, � ∈ N).

(2.12)

It is clear that system (2.11) can be only approximately solved by means of the truncation.
The small zeros of the truncated determinant represent good approximations for the small
eigenvalues of the problem and the higher the order of the truncation the larger the upper
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bound of the precisely obtained eigenvalues. No new eigenvalue smaller than that upper bound
appears however the truncation order is further increased while the corresponding extensions
ϕ− turn rapidly to be practically stable. Additionally, the approximate solutions of a certain
problem, obtained in this way, were again used as a basis for redefining the eigenvalues by
means of the Rayleigh–Ritz technique [6]. The improved eigenvalues are practically stable
starting from the fourth-order truncated solutions and the improvements are almost negligible
when the truncation exceeds the seventh order.

It should be noted that relations (2.12) together with (2.2) show that it is the first bounded
number of terms from the summation in equations (2.11) that contribute to the value of ��−(γ )
and

��−(γ ) < o(�−3/2) (2.13)

in accordance with the requirement that �̃�−(γ ) are Fourier coefficients of a Hölder-continuous
function. Thus, the summation in equation (2.1) is an L2[−c, c] function and this ensures the
existence of its bounded solution (2.3).

If a certain eigenvalue γ is known, system (2.11) can in general be solved by setting one
of its unknowns equal to unity (�̃0−(γ ), say) and excluding one of its equations (the first
which corresponds to � = 0, say). The inhomogeneous and non-singular system thus obtained
is exactly what could have been obtained on following the same technique starting from the
inhomogeneous integral equation obtained by replacing �̃0−(γ ) by unity in equation (2.1) and
the truncation of the latter yields the same algebraic system truncated at the same order [3, 6].
Thus, equation (2.1) can be rewritten as

1

π

∫ c

−c

ϕ−(t; γ )
1 − ei(θ−t)

dt −
∞∑ ′

n=−∞
Q|n|(γ )

�n−(γ )
n

einθ = Q0(γ )θ (2.14)

while the solution (2.3) assumes the integral equation form

Kϕ−(γ ) = ϕ−(θ; γ ) − R(θ)

2π2

∫ c

−c

eit dt

R(t)(eit − eiθ )

∫ c

−c

W(t − x)ϕ−(x; γ ) dx

= Q0(γ )g(θ) (2.15)

where

W(t) =
∞∑ ′

n=−∞

Qn(γ )

n
eint . (2.16)

The truncated operator can be defined by

K̃ϕ−(γ ) = ϕ̃−(θ; γ ) − R(θ)

2π2

∫ c

−c

eit dt

R(t)(eit − eiθ )

∫ c

−c

N∑ ′
n=−N

Q|n|(γ )
n

ein(t−x)ϕ̃−(x; γ ) dx.

(2.17)

Thus, we can take X = X0 = Y = Y0 = L2[−c, c].

Lemma 1. For any ε > 0, ‖K − K̃‖ < ε provided N is appropriately chosen. Moreover

‖K − K̃‖ � 2
∞∑

n=N+1

Qn(γ )

n

√√√√π

[
2N2

n0 +
∞∑
�=1

(Nn� − N−n�)2

] |�n−(γ )|
‖ϕ−(γ )‖ = U(N)

�
∞∑

n=N+1

const

n4
. (2.18)
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Proof. For any ϕ− in X0 we have

‖(K − K̃)ϕ−(γ )‖L2
=

(∫ c

−c

∣∣∣∣R(θ)2π2

∫ c

−c

eit dt

R(t)(eit − eiθ )

×
∫ c

−c

∑
|n|>N

Qn(γ )

n
ein(t−x)ϕ−(x; γ ) dx

∣∣∣∣
2

dθ

)1/2

=
(∫ c

−c

∣∣∣∣R(θ)
∞∑

n=N+1

Qn(γ )

n
�n−(γ )[In(θ) − I−n(θ)]

∣∣∣∣
2

dθ

)1/2

�
∞∑

n=N+1

Qn(γ )

n
|�n−(γ )|‖R(θ)[In(θ) − I−n(θ)]‖

�
( ∞∑
n=N+1

Qn(γ )

n
‖R(θ)[In(θ) − I−n(θ)]‖L2

|�n−(γ )|
‖ϕ−(γ )‖

)
‖ϕ−(γ )‖

�
[

2
∞∑

n=N+1

Qn(γ )

n3/2

|�n−(γ )|
‖ϕ−(γ )‖

]
‖ϕ−(γ )‖

where the last step is obtained in view of the estimate (2.8). The required has been proved. �

The solution of the equation

K̃ϕ̃− = Q0(γ )g(x) (2.19)

is reached on determining the coefficients �̃n−(γ ), n = 1, 2, . . . , N , and is achieved by
applying the complex finite Fourier transform to it. This yields a similar system to (2.11) but
truncated at order N and in which

�̃0−(γ ) = 1. (2.20)

The first equation of the system thus obtained will be automatically fulfilled by the solution
of the rest of the equations together with (2.20) as N approaches infinity [3, 6]. This latter
solution exists in general since γ is a zero of the determinant of the whole system (2.11), which
differs from that of the rest of the system even when N increases indefinitely. In this way we
finally have

ϕ̃−(θ; γ ) = −R(θ)

(
Q0(γ )

∞∑
n=1

(−)n

n
[(In(θ) − I−n(θ)]

−
N∑
n=1

Qn(γ )
�̃n−(γ )

n
[(In(θ) − I−n(θ)]

)
. (2.21)

Lemma 2. The inverse operator K̃−1 is bounded. Moreover

∥∥∥K̃−1
∥∥∥ � 1 +

1

|Q0(γ )|
N∑
n=1

∣∣∣∣Qn(γ )

n

∣∣∣∣αn

∣∣�̃n−(γ )
∣∣ = V (N)

� 1 +
N∑
n=1

const

n3
Qn(γ ) (2.22)

where

αn = ‖R(θ)[In(θ) − I−n(θ)]‖L2

‖g(θ)‖L2

. (2.23)
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Proof. We consider the norm

‖ϕ̃−‖L2
= |Q0(γ )| · ‖K̃−1g‖L2

=
(∫ c

−c

∣∣∣∣
N∑
n=1

Qn(γ )

n
�̃n−(γ )R(θ)[In(θ) − I−n(θ)] + Q0(γ )g(θ)

∣∣∣∣
2

dθ

)1/2

�
N∑
n=1

(∫ c

−c

∣∣∣∣Qn(γ )

n
�̃n−(γ )R(θ)[In(θ) − I−n(θ)]

∣∣∣∣
2

dθ

)1/2

+|Q0(γ )|‖g(θ)‖L2

�
N∑
n=1

∣∣∣∣Qn(γ )

n

∣∣∣∣|�n−(γ )|
(∫ c

−c

|R(θ)[In(θ) − I−n(θ)]|2
)1/2

+|Q0(γ )|‖g(θ)‖L2

�
N∑
n=1

∣∣∣∣Qn(γ )

n

∣∣∣∣|�n−(γ )|αn‖g(θ)‖L2 + |Q0(γ )|‖g(θ)‖L2 .

The lemma has been proved. �

It is now clear that the inequality

‖K − K̃‖‖K̃−1‖ < 1

holds true under appropriate choice of N and we finally have the following theorem.

Theorem 2. Under the condition U(N)V (N) < 1, equation (2.1) has a unique solution
subject to condition (2.20) in L2[−c, c] corresponding to every eigenvalue γ .

The function ϕ̃−(θ; γ ) defined by formula (2.21) is an approximate solution of
equation (2.1) and the following estimation holds:

‖ϕ−(γ ) − ϕ̃−(γ )‖L2
� U(N)V (N)

1 − U(N)V (N)
‖ϕ̃−(γ )‖L2

. (2.24)

3. The proof of the estimates

The estimates we have used in the previous section stand in turn on two basic estimates: the
first [7, formula (22.14.9)]

|Pn(cos c)| �
(

2

π sin c

)1/2 1√
n

n ∈ N P0(cos c) = 1 (3.1)

and the second [1]

|A−1| = |A−2| =
∣∣∣∣cos c

2
− 1

2

∣∣∣∣ � 1

and

|A−k| =
∣∣∣∣ 1

2k

[
(2k − 5)!![e−i(k−1)c + ei(k−1)c]

(k − 1)!
−

k−2∑
m=1

(2m − 3)!!(2k − 2m − 5)!!

m!(k − 1 − m)ei(k−1−2m)c

]∣∣∣∣
� 2(2k − 5)!!

(2k − 2)!!
k > 2 [(−1)!! = 0!! = 1]. (3.2)
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Thus

|N−1�| = |A−�−2||P0(cos c)| � 2(2� − 1)!!

(2� + 2)!!
<

1

(� + 1)
√
�

|N−2�| = |A−�−3||P0(cos c)| +

(
2

π sin c

)1/2

|A−�−2|

� 1

(� + 2)
√
� + 1

+

(
2

π sin c

)1/2 1

(� + 1)
√
�

and for n ∈ N − {1, 2} and � ∈ N we have

|N−n�| �
∣∣A−n−�−1

∣∣∣∣P0(cos c)
∣∣ +

n−1∑
j=1

∣∣Aj−n−�−1

∣∣∣∣Pj (cos c)
∣∣

� 1

(n + �)(n + � − 1)1/2
+

(
2

π sin c

)1/2 n−1∑
j=1

1

(n + � − 1 − j)3/2
√
j

� 1

(n + �)(n + � − 1)1/2
+ 2

(
2

π sin c

)1/2 ∫ √
n−1

1

dx

(n + � − 1 − x2)3/2

= 1

(n + 1)(n + � − 1)1/2

+2

(
2

π sin c

)1/2 1

(n + � − 1)

[√
n − 1√
�

− 1√
n + � − 2

]
(3.3)

and analogous results for Nn�. For � = 0 we obtain in a similar way

|N10| = |N−1o| = |A−2| < 1

|N20| = |N−20| � |A−3| +

(
2

π sin c

)1/2

|A−2| � 1

4
+

(
2

π sin c

)1/2

|N30| = |N−30| � |A−4| +

(
2

π sin c

)1/2 (
|A−3| +

1√
2
|A−2|

)

� 1

8
+

(
2

π sin c

)1/2 (
1

4
+

1√
2

)

|Nn0| = |N−n0| � |A−n−1| +
n−2∑
j=1

∣∣Aj−n−1

∣∣∣∣Pj (cos c)
∣∣ + |A−2||Pn−1(cos c)|

� 1

n
√
n − 1

+ 2

(
2

π sin c

)1/2 (√
n − 2

(n − 1)
− 1

(n − 1)
√
n − 2

+
1√
n − 1

)
(3.4)

and

|N0| < 2
∞∑
n=1

|N−n0|
n

< ∞. (3.5)

Taking into account that Nn�, for example, is the �th Fourier component of the function
R(θ)In(θ) we can use the Parseval equality to obtain

Y 2
n = ‖R(θ)[In(θ) − I−n(θ)]‖2

L2
= 4π

[
2|Nn0|2 +

∞∑
�=1

(Nn� − N−n�)
2

]
(3.6)
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and equation (2.8) follows. In the same way, since N0 and 1
n
N−n0 are the Fourier coefficients

of the function g(θ) defined by equation (2.9) it follows that

Y 2 = ‖g(θ)‖2
L2

= 2πN2
0 + 4π

∞∑
n=1

N2
−n0

n2
(3.7)

which establishes the result (2.10).

4. Illustrative numerical example

In this section the above results are applied to the Sturm–Liouville problem considered in [3]
for which

Qn(γ ) = γ Jn+1(γ )

Jn(γ )
.

In the case c = π
2 the first three eigenvalues of this problem are

γ1 = 1.2445 γ2 = 2.9437 and γ3 = 4.6047.

The evolution of |Qn(γi)|, with respect to n and γ , is exhibited in table 1.
As expected, these coefficients terminate with n as a whole although it increases with

respect to γ since Qn(γ ) = γ 2

2(n+1) + · · · . At the eigenvalues γi , the nominators of Qn(γ ) may
not vanish since its zeros are the eigenvalues of the limiting case c = 0, the uniform Dirichlet
problem. Nevertheless, it may happen that some eigenvalue of our problem (for example γ3)
nears some zero(s) of these denominators. At such eigenvalues the values of some coefficients
Qn(γ ) grow and slow down the decay of the quantity U(N)V (N) (see equations (2.18), (2.22)
and (2.24)). However, Qn(γ ) cannot assume large values if n exceeds a certain limit. We may
recall that the larger the order of a Bessel function the larger the magnitude of its first zero.
For our considered eigenvalues, Qn(γ ) decrease monotonically starting from n = 3 and their
values are exceeded by unity if n � 10. Thus, to ensure regular results for the analysis of
section 2 we can take N � 10.

In table 2 values of Y and Yn are calculated by means of expressions (3.7) and (3.5)
respectively. In the summations included by both expressions, only the first 120 terms are
considered. The same results to five decimals are obtained when decreasing the number of the
terms considered to 100. The same hold true for the values

‖ϕ−(γ1)‖ = 3.7183 ‖ϕ−(γ2)‖ = 5.2456 and ‖ϕ−(γ3)‖ = 3.6728

which are calculated from the Parseval’s relation

‖ϕ−(γi)‖ ≈
√√√√2π

[
1 + 2

120∑
n=1

�̃2
n−(γi)

]
.

The values of Ui(N)(= U(N, γi)) as well as Vi(N) and Ei(N) obtained in the same way are
given in tables 3, 4 and 5 respectively, where

E(N) = U(N)V (N)

1 − U(N)V (N)
.
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Table 1. The evolution of Qn(γi).

i n = 0 n = 1 n = 2 n = 3 n = 4 n = 10 n = 20 n = 60 n = 90 n = 120

1 0.997 0.414 0.266 0.197 0.156 0.064 0.035 0.012 0.008 0.006
2 −4.405 30.966 1.815 1.227 0.938 0.366 0.218 0.071 0.047 0.035
3 4.023 −3.269 10.48 3.977 2.669 0.915 0.487 0.173 0.116 0.087

Table 2. The value of ‖g(θ)‖ to the left and the behaviour of ‖gn(θ)‖ as n increases.

Y Yn = 1 Yn = 2 Yn = 3 Yn = 10 Yn = 20 Yn = 60 Yn = 100

2.553 3.779 2.828 2.983 2.608 2.566 2.530 2.518

Table 3. Upper estimations of the norm of the neglected (remainder) operator K(γi) −
K̃(N, γi), i = 1, 2, 3 and N = 10, 20, 30.

i N = 10 N = 20 N = 30

1 0.060 28 0.020 05 0.000 02
2 0.001 51 0.000 26 0.000 09
3 0.004 01 0.000 72 0.000 26

Table 4. Upper estimations of the norm of the inverse truncated operator K̃−1(N, γi), i = 1, 2, 3
and N = 10, 20, 30.

i N = 10 N = 20 N = 30

1 1.576 1.581 1.582
2 2.803 2.811 2.813
3 2.605 2.622 2.626

Table 5. The upper bounds E(N, γi), i = 1, 2, 3 and N = 10, 20, 30 of the resulting error in the
solution of the homogeneous integral equation due to the truncation.

i N = 10 N = 20 N = 30

1 0.000 46 0.000 08 0.000 03
2 0.004 26 0.000 76 0.000 27
3 0.010 55 0.001 91 0.000 69

5. Conclusion

The mixed Sturm–Liouville problems can be formulated into singular homogeneous integral
equations. The eigenvalues of such equations can be exactly found but the corresponding
solutions can in general be approximated. To make them useful, the error resulted in these
solutions must be estimated and the approximation of a homogeneous operator must be
definitely justified a priori. This represents a rather difficult requirement to satisfy. To the
author’s best knowledge, there are no references in the literature about the approximation of
a homogeneous operator except possibly his previous incomplete attempt involved in [3]. In
this work, the above-mentioned requirement is fulfilled. The lines established here can be
followed when analogous results are required for different homogeneous operators.



1262 M G ElSheikh

Acknowledgments

The author is sincerely indebted to Mr M A Helal for his help in carrying out the numerical
calculations of this work. The author is indebted to the referees of Journal of Physics A:
Mathematical and General for their valuable comments and fruitful suggestions.

References

[1] Eckhardt U and ElSheikh M G 1987 A Fourier method for initial value problems with mixed boundary conditions.
Comput. Math. Appl. 14 189–99

[2] ElSheikh M G 1996 On the solutions of mixed initial Dirichlet–Neumann problem for the wave equation in the
rectangle J. Egypt. Math. Soc. 4 49–62

[3] ElSheikh M G 1996 On the mixed Dirichlet–Neumann problem for the wave equation in the circle J. Phys. A:
Math. Gen. 29 595–606

[4] Chersky J I 1963 Two theorems on estimation of the error and some of their applications Dokl. Akad. Nauk. SSSR
150 271–4

[5] Muskhelishvili N I 1953 Singular Integral Equations (Groningen: Noordhoff)
[6] ElSheikh M G 1997 The justification of the truncation applied to homogeneous integral equations with Cauchy’s

kernel Math. Comput. Modelling 33 65–71
[7] Abramowitz M and Stegun A 1970 Handbook of Mathematical Functions (New York: Dover)


